Process Regulation in the Problem-Solving Processes of Fifth Graders
Abstract
It is well known that the regulation of processes is an important factor in problem solving from Grade 7 to university level (cf. Mevarech & Kramarski, 1997; Schoenfeld, 1985). We do not, however, know much about the problem-solving competencies of younger children (cf. Heinze, 2007, p. 15). Do the results of studies also hold true for students below Grade 7? The study presented here strongly suggests that metacognition and process regulation is important in Grade 5 as well.
The research questions are: How do the (more or less successful) problem-solving processes of fifth graders occur? What is the impact of metacognition and selfregulation on these processes? Are the transitions between phases in the problemsolving process closely connected to metacognitive activities?
An analysis of approximately 100 problem-solving processes of fifth graders (aged 10–12) from German secondary schools will be used to help answer these questions. The videotapes that supplied the raw data were parsed into phases called episodes using an adapted version of the “protocol analysis framework†by Schoenfeld (1985, ch. 9). The junctures between these episodes were additionally coded with the “system for categorizing metacognitive activities†by Cohors-Fresenborg and Kaune (2007a). There is a strong correlation between
(missing) process regulation and success (or failure) in the problem-solving attempts. Concluding suggestions are given for the implementation of the results in school teaching. These suggestions are currently being tested.
Downloads
References
Brockmann-Behnsen, D. (2012b). A long-term educational treatment using dynamic geometry software. In M. Joubert, A. Clarck-Wilson, & M. McCabe, Proceedings of the 10th International
Conference for Technology in Mathematics Teaching (ICTMT10) (pp. 196–302).
Cohors-Fresenborg, E., & Kaune, C. (2007a). Kategoriensystem für metakognitive Aktivitäten beim schrittweise kontrollierten Argumentieren im Mathematikunterricht. Arbeitsbericht Nr. 44,
Forschungsinstitut für Mathematikdidaktik, Universität Osnabrück.
Cohors-Fresenborg, E., & Kaune, C. (2007b). Modelling Classroom Discussions and Categorising Discursive and Metacognitive Activities. In Proceedings of CERME 5 (pp. 1180 – 1189). Retrieved December 21 2012 from http://www.ikm.uni-osnabrueck.de/mitglieder/cohors/literatur/CERME5_discursivness_metacognition.pdf
Cohors-Fresenborg, E., Kramer, S., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM Mathematics Education, 42, 231–244.
Jacobs, J., Garnier, H., Gallimore, R., Hollingsworth, H., Givvin, K. B., Rust, K., et al. (2003). Third International Mathematics and Science Study 1999 Video Study Technical Report. Volume 1:
Mathematics. Washington: National Center for Education Statistics. Institute of Education Statistics, U. S. Department of Education.
Mason, J., Burton, L., & Stacey, K. (1982/2010). Thinking Mathematically. Dorchester: Pearson Education Limited. Second Edition.
Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A Multidimensional Method for Teaching Mathematics in Heterogeneous Classrooms. American Educational Research Journal, 92(4), 365–394.
Pólya, G. (1945). How to Solve It. Princeton, NJ: University Press.
Rott, B. (2012a). Problem Solving Processes of Fifth Graders – an Analysis of Problem Solving Types. In Proceedings of the 12th ICME Conference. Seoul, Korea. Retrieved November 25 2012 from http://www.icme12.org/upload/UpFile2/TSG/0291.pdf
Rott, B. (2012b). Models of the Problem Solving Process – a Discussion Referring to the Processes of Fifth Graders. In T. Bergqvist (Ed.), Proceedings from the 13th ProMath conference, Sep. 2011 (pp. 95–109).
Schoenfeld, A. H. (1985). Mathematical Problem Solving. Orlando, Florida: Academic Press, Inc.
Schoenfeld, A. H. (1992). On Paradigms and Methods: What do you do when the ones you know don’t do what you want them to? Issues in the Analysis of data in the form of videotapes. The Journal of the learning of sciences, 2(2), 179–214.
Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Mathematical problem solving. In P. S. Wilson (Ed.), Research ideas for the classroom: High school mathematics. Chapter. 4. (pp. 57–77).
Authors who publish with this journal agree to the following terms:
- Authors are confirming that they are the authors of the submitted article, which will be published online in the Center for Educational Policy Studies Journal (for short: CEPS Journal) by University of Ljubljana Press (University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia). The Author’s/Authors’ name(s) will be evident in the article in the journal. All decisions regarding layout and distribution of the work are in the hands of the publisher.
- The Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit themselves to defend the interests of the publisher, and shall cover any potential costs.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under https://creativecommons.org/licenses/by/4.0/deed.en that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.