Jezikovna podpora v laboratoriju za učence za kemijo na predmetni stopnji osnovne šole ter v srednji šoli

  • Sarah Kieferle PhD student at Ludwigsburg University of Education, Ludwigsburg, Germany
  • Silvija Markic Ludwig Maximilian University of Munich, Munich, Germany
Ključne besede: pouk kemije, jezikovna občutljivost, izobraževanje na predmetni stopnji osnovne šole, srednješolsko izobraževanje, laboratorij za učence

Povzetek

Po vsem svetu šole obiskujejo učenci z različnimi maternimi jeziki. Je-zikovne kompetence učencev so tako raznolike. Spoprijemanje s to ra-znolikostjo je velik izziv za učitelje na splošno, tudi pri naravoslovnih predmetih. Da bi se spoprijeli s tem izzivom, bi morale vse ustanove, vključene v izobraževanje, prilagoditi poučevanje in učenje jezikovni raznolikosti ter tako spodbujati jezikovne kompetence učencev. Ne-formalno izobraževanje, kot so laboratoriji za učence, bi lahko okrepi-lo formalno izobraževanje o kemiji ter pomagalo učencem pri učenju vsebin predmeta in pridobivanju jezikovnih kompetenc. V ta namen se za različne teme in kontekste s področja kemije razvijajo jezikovno občutljiva in jezikovno podporna učna okolja, ki vsem učencem omo-gočajo aktivno sodelovanje in spodbujajo jezikovne kompetence. Učne okoliščine se izvajajo in evalvirajo na Pedagoški univerzi v Ludwigsbur-gu (Nemčija) z uporabo cikličnega pristopa, ki temelji na sodelovalnem akcijskem raziskovanju. Podatki 147 učencev iz sedmih učnih skupin različnih razredov in vrst šol so bili zbrani, preden so izkusili delo v laboratorijih za učence, in po tem. Poudarek je bil na situacijskih inte-resih učencev in njihovih pogledih na ponujene jezikovno občutljive in jezikovno podporne metode, orodja in dejavnosti. Podatki kažejo, da pristop pozitivno vpliva na situacijski interes učencev. Metode, ki so bile za učence še posebej koristne, so odbrane in posebej izpostavljene. Na tej podlagi so podane implikacije za uporabo v drugih ponudbah nefor-malnega izobraževanja.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Affeldt, F., Markic, S., & Eilks, I. (2019). Students' use of graded learning aids for inquiry learning. Chemistry in Action, 114, 28–33.

Affeldt, F., Tolppanen, S., Aksela, M., & Eilks, I. (2017). The potential of the non-formal educational sector for supporting chemistry learning and sustainability education for all students – a joint perspective from two cases in Finland and Germany. Chemistry Education Research and Practice, 18(1), 13–25. https://doi.org/10.1039/C6RP00212A

Affeldt, F., Weitz, K., Siol, A., Markic, S., & Eilks, I. (2015). A non-formal student laboratory as a place for innovation in education for sustainability for all students. Education Sciences, 5(3), 238–254. https://doi.org/10.3390/educsci5030238

Brandt, A. (2005). Förderung von Motivation und Interesse durch außerschulische Experimentierlabors. [Promoting motivation and interest through out-of-school experimental laboratories]. Cuvillier Verlag. https://pub.uni-bielefeld.de/record/2437788

Chen, A., Darst, P. W., & Pangrazi, R. P. (2001). An examination of situational interest and its sources. British Journal of Educational Psychology, 71(3), 383–400. https://doi.org/10.1348/000709901158578

Childs, P., Markic, S., & Ryan, M. (2015). The Role of Language in the Teaching and Learning of Chemistry: Chapter 17. In J. García-Martínez & E. Serrano-Torregrosa (Eds.), Chemistry education (pp. 421–445). Wiley-VCH.

Childs, P. E., & Ryan, M. (2016). Chapter 4: Strategies for Teaching the Language of Science. In S. Markic, & S. Abels (Eds.), Science education towards inclusion (pp. 43–66). Nova Publishers.

Coll, R. K., Gilbert, J. K., & Streller, S. (2013). How to benefit from the informal and interdisciplinary dimension of chemistry in teaching. In I. Eilks & A. Hofstein (Eds.), Teaching Chemistry — A Studybook: A Practical Guide and Textbook for Student Teachers, Teacher Trainees and Teachers (pp. 241–268). Sense Publishers.

Eilks, I., & Ralle, B. (2002). Partizipative Fachidaktische Aktionsforschung Ein Modell für eine begründete und praxisnahe curriculare Entwicklungsforschung in der Chemiedidaktik. [Participatory didactic action research A model for well-founded and practice-oriented curricular development research in chemistry didactics]. Chemie Konkret, 1, 13–18.

Engeln, K. (2004). Schülerlabors: Authentische, aktivierende Lernumgebungen als Möglichkeit, Interesse an Naturwissenschaften und Technik zu wecken [Student laboratories: Authentic, activating learning environments as an opportunity to awaken interest in science and technology] (Vol. 36). Logos.

Euler, M., Schüttler, T., & Hausamann, D. (2015). Schülerlabore: Lernen durch Forschen und Entwickeln [School labs: learning through research and development]. In E. Kircher, R. Girwidz, & P. Häußler (Eds.), Physikdidaktik (pp. 759–782). Springer. https://doi.org/10.1007/978-3-642-41745-0_26

Findeisen, S., Horn, S., & Seifried, J. (2019). Lernen durch Videos – Empirische Befunde zur Gestaltung von Erklärvideos. [Learning through videos - Empirical findings on the design of explanatory videos] MedienPädagogik: Zeitschrift Für Theorie Und Praxis Der Medienbildung, 16–36. https://doi.org/10.21240/mpaed/00/2019.10.01.X

Gardenswartz, L., Cherbosque, J., & Rowe, A. (2010). Emotional intelligence and diversity: A model for differences in the workplace. Journal of Psychological Issues in Organizational Culture, 1(1), 74–84. https://doi.org/10.1002/jpoc.20002

Gogolin, I. (2013). The “monolingual habitus” as the common feature in teaching in the language of the majority in different countries. Per Linguam, 13(2), Article 2. https://doi.org/10.5785/13-2-187

Greitemann, L., & Melle, I. (2020). Transferring and optimizing a laptop-based learning environment for the use on iPads. World Journal of Chemical Education, 8(1), 40–46. https://doi.org/10.12691/wjce-8-1-5

Groß, K., & Reiners, C. S. (2012). Experimente alternativ dokumentieren [Document experiments alternatively]. CHEMKON, 19(1), 13–20. https://doi.org/10.1002/ckon.201110165

Guderian, P. (2007). Wirksamkeitsanalyse außerschulischer Lernorte der Einfluss mehrmaliger Besuche eines Schülerlabors auf die Entwicklung des Interesses an Physik [Effectiveness analysis of extracurricular learning locations - the influence of repeated visits to a school laboratory on the development of interest in physics] [Humboldt-Universität zu Berlin]. https://doi.org/10.18452/15610

Guderian, P., & Priemer, B. (2008). Interessenförderung durch Schülerlaborbesuche — Eine Zusammenfassung der Forschung in Deutschland [Promoting interest through school lab visits-A summary of research in Germany]. Physik und Didaktik in Schule und Hochschule, 2/7, 27–36.

Huwer, J., Bock, A., & Seibert, J. (2018). The School Book 4.0: The Multitouch Learning Book as a Learning Companion. American Journal of Educational Research, 6(6), 763–772. https://doi.org/10.12691/education-6-6-27

Juntunen, M., & Aksela, M. (2013). Life-cycle thinking in inquiry-based sustainability education – effects on students' attitudes towards chemistry and environmental literacy. Center for Educational Policy Studies Journal, 3(2), 157–180. https://doi.org/10.26529/cepsj.244

Kieferle, S., & Markic, S. (2023). Development and implementation of innovative concepts for language-sensitive student laboratories. Chemistry Education Research and Practice. 24(2), 740–753. https://doi.org/10.1039/D2RP00221C

Lee, O. (2005). Science education with English language learners: synthesis and research agenda. Review of Educational Research, 75, 491–530.

Leisen, J. (2010). Handbuch Sprachförderung im Fach: Sprachsensibler Fachunterricht in der Praxis ; Grundlagenwissen, Anregungen und Beispiele für die Unterstützung von sprachschwachen Lernern und Lernern mit Zuwanderungsgeschichte beim Sprechen, Lesen, Schreiben und Üben im Fach [Handbook for language support in the subject: Language-sensitive subject teaching in practice; basic knowledge, suggestions and examples for supporting language-impaired learners and learners with a migration background in speaking, reading, writing and practising in the subject]. Varus-Verl.

Leisen, J. (Ed.). (2015). Methoden-Handbuch deutschsprachiger Fachunterricht [Method handbook for German-language subject teaching] (DFU). Pagina Verlag.

Lynch, S. (2001). “Science for all” is not equal to “one size fits all”: linguistic and cultural diversity and science education reform. Journal of Research in Science Teaching, 38(5). https://doi.org/10.1002/tea.1021

Mamlok-Naaman, R., & Mandler, D. (2020). Education for Sustainable Development in High School through Inquiry-Type Socio-Scientific Issues. In S. O. Obare, C. H. Middlecamp, & K. E. Peterman (Eds.), ACS Symposium Series (Vol. 1344, pp. 69–78). American Chemical Society. https://doi.org/10.1021/bk-2020-1344.ch006

Markic, S., Broggy, J., & Childs, P. (2013). 5. How to deal with linguistic issues in chemistry classes. In A. Hofstein & I. Eilks (Eds.), Teaching Chemistry—A Studybook (pp. 127–152). Sense Publishers.

Miller, J. (2009). Teaching Refugee Learners with Interrupted Education in Science: Vocabulary, literacy and pedagogy. International Journal of Science Education, 31(4), 571–592. https://doi.org/10.1080/09500690701744611

Morris, C., & Chikwa, G. (2014). Screencasts: How effective are they and how do students engage language support in a student laboratory for chemistry in secondary school with them? Active Learning in Higher Education, 15(1), 25–37. https://doi.org/10.1177/1469787413514654

OECD. (2012). Are Students More Engaged When Schools Offer Extracurricular Activities?, PISA in Focus, 18, OECD Publishing. https://doi.org/10.1787/5k961l4ccczt-en

OECD. (2019). PISA 2018 results (volume ii): Where all students can succeed. OECD Publishing. https://doi.org/10.1787/b5fd1b8f-en

Raguse, K., Weber-Peukert, G., Woldt, P., & Lotz, A. (2013). Individuelle Förderung im Chemieunterricht—Der Förderkreis am Beispiel der Unterrichtseinheit „Laborführerschein“ [Individual support in chemistry lessons-The support group using the example of the “Laboratory driving license” teaching unit.]. CHEMKON, 20(4), 183–190. https://doi.org/10.1002/ckon.201310203

Reinke, B., Eisenmann, M., Matthiesen, S., Matthiesen, U., & Wagner, I. (2021). Erklärvideos—Im naturwissenschaftlich-technischen Unterricht eine Alternative zu Texten? [Explanatory videos - an alternative to texts in science and technology lessons?] Journal of Technical Education (JOTED), 9(2), 168–187. https://doi.org/10.48513/JOTED.V9I2.217

Rennie, L. J. (2014). Learning Science Outside of School. In S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 120–144). Taylor & Francis Group.

Rikala, J., Vesisenaho, M., & Mylläri, J. (2013). Actual and potential pedagogical use of tablets in schools. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 9(2), 113–131. https://doi.org/10.17011/ht/urn.201312042736

Röllke, K., & Großmann, N. (2022). Predictors of students' intrinsic motivation in a biotechnological out-of-school student lab. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.859802

Scholz, M., Dönges, C., Risch, B., & Roth, J. (2016). Anpassung von Arbeitsmaterialien für selbstständiges Arbeiten von Schülerinnen und Schülern mit kognitiven Beeinträchtigungen in Schülerlaboren – Ein Pilotversuch. [Adaptation of working materials for independent work by pupils with cognitive impairments in school laboratories - a pilot project.] Zeitschrift für Heilpädagogik, 67(7), 318–328.

Stäudel, L., Franke-Braun, G., & Schmidt-Weigand, F. (2007). Komplexität erhalten - auch in heterogenen Lerngruppen: Aufgaben mit gestuften Lernhilfen [Maintain complexity - even in heterogeneous learning groups: Tasks with graded learning aids]. CHEMKON, 14(3), 115–122. https://doi.org/10.1002/ckon.200710058

Objavljeno
2024-03-29
Kako citirati
Kieferle, S., & Markic, S. (2024). Jezikovna podpora v laboratoriju za učence za kemijo na predmetni stopnji osnovne šole ter v srednji šoli. Revija Centra Za študij Edukacijskih Strategij , 14(1), 33–53. https://doi.org/10.26529/cepsj.1605